John Archibald Wheeler (July 9, 1911)

The life cycle 124875

Important years of life

1927 1
1928 2
1930 4
1934 8
1942 7
1949 5

1954 1
1955 2
1957 4
1961 8
1969 7
1976 5

1981 1
1982 2
1984 4
1988 8
1996 7
2003 5

2008 1

April 13, 2008

wiki information

He published his first scientific paper in 1930, as part of a summer job at the National Bureau of Standards

He received a National Research Council fellowship, which he used to study under Gregory Breit at New York University in 1933 and 1934, and then in Copenhagen under Niels Bohr in 1934 and 1935. In a 1934 paper, Breit and Wheeler introduced the Breit–Wheeler process, a mechanism by which photons can be potentially transformed into matter in the form of electron-positron pairs

Manhattan Project

Soon after the Japanese bombing of Pearl Harbor brought the United States into World War II, Wheeler accepted a request from Arthur Compton to join the Manhattan Project’s Metallurgical Laboratory in Chicago. He moved there in January 1942, joining Eugene Wigner’s group, which was studying nuclear reactor design. He co-wrote a paper with Robert F. Christy on “Chain Reaction of Pure Fissionable Materials in Solution”, which was important in the plutonium purification process. It would not be declassified until December 1955. He gave the neutron moderator its name, replacing the term “slower downer” used by Enrico Fermi… In an April 1942 report, he predicted that this would reduce the reactivity by less than one percent so long as no fission product had a neutron capture cross section of more than 100,000 barns. After the reactor unexpectedly shut down, and then just as unexpectedly restarted about fifteen hours later, he suspected iodine-135, with a half life of 6.6 hours, and its daughter product, xenon-135, which has a half life of 9.2 hours. Xenon-135 turned out to have a neutron capture cross-section of well over 2 million barns. The problem was corrected by adding additional fuel rods to burn out the poison.

Hydrogen bomb

In August 1945 Wheeler and his family returned to Princeton, where he resumed his academic career. Working with Feynman, he explored the possibility of physics with particles, but not fields, and carried out theoretical studies of the muon with Jayme Tiomno, resulting in a series of papers on the topic,including a 1949 paper in which Tiomno and Wheeler introduced the “Tiomno Triangle”, which related different forms of radioactive decay. He also suggested the use of muons as a nuclear probe. This paper, written and privately circulated in 1949 but not published until 1953, resulted in a series of measurements of the Chang radiation emitted by muons. Muons are a component of cosmic rays, and Wheeler became the founder and first director of Princeton’s Cosmic Rays Laboratory, which received a substantial grant of $375,000 from the Office of Naval Research in 1948. He received a Guggenheim Fellowship in 1946, which allowed him to spend the 1949–50 academic year in Paris.

The “Sausage” device of Ivy Mike nuclear test on Enewetak Atoll. The Sausage was the first true hydrogen bomb ever tested.

The 1949 detonation of Joe-1 by the Soviet Union prompted an all-out effort by the United States, led by Teller, to develop the more powerful hydrogen bomb in response. Henry D. Smyth, Wheeler’s department head at Princeton, asked him to join the effort. Most physicists were, like Wheeler, trying to re-establish careers interrupted by the war and were reluctant to face more disruption. Others had moral objections…

…With Kent Harrison, Kip Thorne and Masami Wakano he wrote Gravitation Theory and Gravitational Collapse (1954). This led to the voluminous general relativity textbook Gravitation (1973), co-written with Misner and Thorne. Its timely appearance during the golden age of general relativity and its comprehensiveness made it an influential relativity textbook for a generation.

Wheeler retired from Princeton University in 1976 at the age of 65. He was the director of the Center for Theoretical Physics at the University of Texas at Austin from 1976 until 1986, when he retired and became a professor emeritus there. Misner, Thorne and Wojciech Zurek, all former students of Wheeler, wrote that:

Looking back on Wheeler’s 10 years at Texas, many quantum information scientists now regard him, along with IBM’s Rolf Landauer, as a grandfather of their field. That, however, was not because Wheeler produced seminal re-search papers on quantum information. He did not—with one major exception, his delayed-choice experiment. Rather, his role was to inspire by asking deep questions from a radical conservative viewpoint and, through his questions, to stimulate others’ research and discovery

Geometrodynamics

After concluding his Matterhorn Project work, Wheeler resumed his academic career. In a 1955 paper he theoretically investigated the geon, an electromagnetic or gravitational wave that is held together in a confined region by the attraction of its own field. He coined the name as a contraction of “gravitational electromagnetic entity.” He found that the smallest geon was a toroid the size of the Sun, but millions of times heavier. While working on mathematical extensions to Einstein’s Theory of General Relativity in 1957, Wheeler introduced the concept and word wormhole to describe hypothetical “tunnels” in space-time. Bohr asked if they are stable and further research by Wheeler determined that they are not

Franklin Medal in 1969

Einstein Prize in 1969

…For most of his career, Wheeler was a professor at Princeton University, which he joined in 1938, remaining until his retirement in 1976. At Princeton he supervised 46 PhDs, more than any other professor in the Princeton physics department.

Gravitism

Since 1981, Wheeler repeatedly reflected on Benjamin Gal-Or’s “gravitism” that maintains that the expansion of the universe (manifested by the expansion of the cold, dark voids between all non-expanding, visible clusters of galaxies) is the root-cause of the Second Law of Thermodynamics and of all asymmetry in time, as an unsaturable, expanding, universal “sink”:

I continue to reflect, again and again, on your central thesis that expansion is the origin of all asymmetry in time

Niels Bohr International Gold Medal in 1982

Wheeler’s delayed choice experiment is actually several thought experiments in quantum physics that he proposed, with the most prominent among them appearing in 1978 and 1984. These experiments are attempts to decide whether light somehow “senses” the experimental apparatus in the double-slit experiment it will travel through and adjusts its behavior to fit by assuming the appropriate determinate state for it, or whether light remains in an indeterminate state, neither wave nor particle, and responds to the “questions” asked of it by responding in either a wave-consistent manner or a particle-consistent manner depending on the experimental arrangements that ask these “questions” ( light somehow “senses” the experimental apparatus : see my photos Igor Galyona

In his experiments Igor Galyona proves that light senses the experimental device and interacts with it by sending information that the device can receive and decipher.

During experiments lasted for several years he got “light-inspired” images using camera.

The received photos correspond to camera’s ability to accept images and then demonstrate them to a person.

So, we’ve got the interaction between light and apparatus , as well as interaction between light and observer.

Galyona’s experiments with light demonstrate that the observer can mentally ask questions and get reply in the form of images that can be decoded by him.)

J. Robert Oppenheimer Memorial Prize in 1984

Albert Einstein Medal in 1988

…Wheeler wrote Geometrodynamics (1962), and teamed up with Edwin F. Taylor to write Spacetime Physics (1966) and Scouting Black Holes (1996).

Einstein Prize (APS) (2003)

Previous post
Next post

Comments are closed.