Albert Einstein ( 14 March 1879 )

The life cycle 6 3

Important years of life

1896 6
1902 3
1905 6
1911 3
1914 6
1920 3
1923 6
1929 3
1932 6
1938 3
1941 6
1947 3
1950 6

18 April 1955 = 1977 = 24 = 6

Continue the life cycles

1956 3
1959 6
1965 3
1968 6
1974 3
1977 6
1983 3
1986 6
1992 3
1995 6
2001 3
2004 6
2010 3
2013 6
2019 3
2022 6
2028 3
2031 6
2037 3
2040 6
2046 3

wiki information

In January 1896, with his father’s approval, Einstein renounced his citizenship in the German Kingdom of Württemberg to avoid military service.[24] In September 1896, he passed the Swiss Matura with mostly good grades, including a top grade of 6 in physics and mathematical subjects, on a scale of 1–6.Though only 17, he enrolled in the four-year mathematics and physics teaching diploma program at the Zürich Polytechnic. Marie Winteler moved to Olsberg, Switzerland, for a teaching post.

Near the beginning of his career, Einstein thought that Newtonian mechanics was no longer enough to reconcile the laws of classical mechanics with the laws of the electromagnetic field. This led him to develop his special theory of relativity during his time at the Swiss Patent Office in Bern (1902–1909), Switzerland

The discovery and publication in 1987 of an early correspondence between Einstein and Marić revealed that they had had a daughter, called “Lieserl” in their letters, born in early 1902 in Novi Sad where Marić was staying with her parents. Marić returned to Switzerland without the child, whose real name and fate are unknown. Einstein probably never saw his daughter. The contents of his letter to Marić in September 1903 suggest that the girl was either given up for adoption or died of scarlet fever in infancy.

With a few friends he had met in Bern, Einstein started a small discussion group in 1902, self-mockingly named “The Olympia Academy”, which met regularly to discuss science and philosophy. Their readings included the works of Henri Poincaré, Ernst Mach, and David Hume, which influenced his scientific and philosophical outlook

Thermodynamic fluctuations and statistical physics

Main articles: Statistical mechanics, thermal fluctuations, and statistical physics Einstein’s first paper submitted in 1900 to Annalen der Physik was on capillary attraction. It was published in 1901 with the title “Folgerungen aus den Capillaritätserscheinungen”, which translates as “Conclusions from the capillarity phenomena”.
Two papers he published in 1902–1903 (thermodynamics) attempted to interpret atomic phenomena from a statistical point of view. These papers were the foundation for the 1905 paper on Brownian motion, which showed that Brownian movement can be construed as firm evidence that molecules exist.

… Over the next few years, Einstein and Marić’s friendship developed into romance, and they read books together on extra-curricular physics in which Einstein was taking an increasing interest. In 1900, Einstein was awarded the Zürich Polytechnic teaching diploma, but Marić failed the examination with a poor grade in the mathematics component, theory of functions.There have been claims that Marić collaborated with Einstein on his 1905 papers, known as the Annus Mirabilis papers, but historians of physics who have studied the issue find no evidence that she made any substantive contributions

…On 30 April 1905, Einstein completed his thesis,[54] with Alfred Kleiner, Professor of Experimental Physics, serving as pro-forma advisor. As a result, Einstein was awarded a PhD by the University of Zürich, with his dissertation titled, “A New Determination of Molecular Dimensions.”[54] That same year, which has been called Einstein’s annus mirabilis (miracle year), he published four groundbreaking papers, on the photoelectric effect, Brownian motion, special relativity, and the equivalence of mass and energy, which were to bring him to the notice of the academic world, at the age of 26.

1905 – Annus Mirabilis papers
Main articles: Annus Mirabilis papers, Photoelectric effect, Special theory of relativity, Mass–energy equivalence, and Brownian motion
The Annus Mirabilis papers are four articles pertaining to the photoelectric effect (which gave rise to quantum theory), Brownian motion, the special theory of relativity, and E = mc2 that Einstein published in the Annalen der Physik scientific journal in 1905. These four works contributed substantially to the foundation of modern physics and changed views on space, time, and matter.

…Einstein became a full professor at the German Charles-Ferdinand University in Prague in April 1911, accepting Austrian citizenship in the Austro-Hungarian Empire to do so. During his Prague stay, he wrote 11 scientific works, five of them on radiation mathematics and on the quantum theory of solids. In July 1912, he returned to his alma mater in Zürich.

…Based on calculations Einstein made in 1911, about his new theory of general relativity, light from another star should be bent by the Sun’s gravity.

Einstein noted in 1911 that the same adiabatic principle shows that the quantity which is quantized in any mechanical motion must be an adiabatic invariant. Arnold Sommerfeld identified this adiabatic invariant as the action variable of classical mechanics.

…In a series of works completed from 1911 to 1913, Planck reformulated his 1900 quantum theory and introduced the idea of zero-point energy in his “second quantum theory.” Soon, this idea attracted the attention of Einstein and his assistant Otto Stern. Assuming the energy of rotating diatomic molecules contains zero-point energy, they then compared the theoretical specific heat of hydrogen gas with the experimental data. The numbers matched nicely. However, after publishing the findings, they promptly withdrew their support, because they no longer had confidence in the correctness of the idea of zero-point energy

In 1911, Einstein published another article “On the Influence of Gravitation on the Propagation of Light” expanding on the 1907 article, in which he estimated the amount of deflection of light by massive bodies. Thus, the theoretical prediction of general relativity can for the first time be tested experimentally

…Between 1895 and 1914 he lived in Switzerland (except for one year in Prague, 1911–12), where he received his academic diploma from the Swiss Federal Polytechnic in Zürich (later the Eidgenössische Technische Hochschule, ETH) in 1900. He later taught there at the same institute as a professor of theoretical physics between 1912 and 1914 before he left for Berlin

In April 1914 they moved to Berlin. After a few months his wife returned to Zürich with their sons, after learning that Einstein’s chief romantic attraction was his first and second cousin Elsa

From 1912 until 1914, he was professor of theoretical physics at the ETH Zurich, where he taught analytical mechanics and thermodynamics. He also studied continuum mechanics, the molecular theory of heat, and the problem of gravitation, on which he worked with mathematician and friend Marcel Grossmann

…He joined the academy and thus the Berlin University on 1 April 1914

In 1920, he became a Foreign Member of the Royal Netherlands Academy of Arts and Sciences

Einstein visited Spain for two weeks in 1923, where he briefly met Santiago Ramón y Cajal and also received a diploma from King Alfonso XIII naming him a member of the Spanish Academy of Sciences

Max Planck Medal (1929)

The FBI created a secret dossier on Einstein in 1932, and by the time of his death his FBI file was 1,427 pages long.

Following the discovery of the recession of the nebulae by Edwin Hubble in 1929, Einstein abandoned his static model of the universe, and proposed two dynamic models of the cosmos, The Friedmann-Einstein universe of 1931 and the Einstein–de Sitter universe of 1932.In each of these models, Einstein discarded the cosmological constant, claiming that it was “in any case theoretically unsatisfactory”

Following his research on general relativity, Einstein entered into a series of attempts to generalize his geometric theory of gravitation to include electromagnetism as another aspect of a single entity. In 1950, he described his “unified field theory” in a Scientific American article titled “On the Generalized Theory of Gravitation”. Although he continued to be lauded for his work, Einstein became increasingly isolated in his research, and his efforts were ultimately unsuccessful. In his pursuit of a unification of the fundamental forces, Einstein ignored some mainstream developments in physics, most notably the strong and weak nuclear forces, which were not well understood until many years after his death. Mainstream physics, in turn, largely ignored Einstein’s approaches to unification. Einstein’s dream of unifying other laws of physics with gravity motivates modern quests for a theory of everything and in particular string theory, where geometrical fields emerge in a unified quantum-mechanical setting.

Continue the life cycles

In a memorial lecture delivered on December 13, 1965, at UNESCO headquarters, nuclear physicist Robert Oppenheimer summarized his impression of Einstein as a person: “He was almost wholly without sophistication and wholly without worldliness … There was always with him a wonderful purity at once childlike and profoundly stubborn.”

While traveling, Einstein wrote daily to his wife Elsa and adopted stepdaughters Margot and Ilse. The letters were included in the papers bequeathed to The Hebrew University. Margot Einstein permitted the personal letters to be made available to the public, but requested that it not be done until twenty years after her death (she died in 1986)

In 1924, Einstein received a description of a statistical model from Indian physicist Satyendra Nath Bose, based on a counting method that assumed that light could be understood as a gas of indistinguishable particles. Einstein noted that Bose’s statistics applied to some atoms as well as to the proposed light particles, and submitted his translation of Bose’s paper to the Zeitschrift für Physik. Einstein also published his own articles describing the model and its implications, among them the Bose–Einstein condensate phenomenon that some particulates should appear at very low temperatures. It was not until 1995 that the first such condensate was produced experimentally by Eric Allin Cornell and Carl Wieman using ultra-cooling equipment built at the NIST–JILA laboratory at the University of Colorado at Boulder. Bose–Einstein statistics are now used to describe the behaviors of any assembly of bosons. Einstein’s sketches for this project may be seen in the Einstein Archive in the library of the Leiden University.

In late 2013, a team led by the Irish physicist Cormac O’Raifeartaigh discovered evidence that, shortly after learning of Hubble’s observations of the recession of the nebulae, Einstein considered a steady-state model of the universe. In a hitherto overlooked manuscript, apparently written in early 1931, Einstein explored a model of the expanding universe in which the density of matter remains constant due to a continuous creation of matter, a process he associated with the cosmological constant. As he stated in the paper, “In what follows, I would like to draw attention to a solution to equation (1) that can account for Hubbel’s [sic] facts, and in which the density is constant over time” … “If one considers a physically bounded volume, particles of matter will be continually leaving it. For the density to remain constant, new particles of matter must be continually formed in the volume from space.”

It thus appears that Einstein considered a steady-state model of the expanding universe many years before Hoyle, Bondi and Gold. However, Einstein’s steady-state model contained a fundamental flaw and he quickly abandoned the idea

Previous post
Next post

Comments are closed.